Automatic laughter detection using neural networks
نویسندگان
چکیده
Laughter recognition is an underexplored area of research. Our goal in this work was to develop an accurate and efficient method to recognize laughter segments, ultimately for the purpose of speaker recognition. Previous work has classified presegmented data as to the presence of laughter using SVMs, GMMs, and HMMs. In this work, we have extended the stateof-the-art in laughter recognition by eliminating the need to presegment the data, while attaining high precision, as well as yielding higher resolution for labeling start and end times. In our experiments, we found neural networks to be a particularly good fit for this problem and the score level combination of the MFCC, AC PEAK, and F0 features to be optimal. We achieved an equal error rate (EER) of 7.9% for laughter recognition, thereby establishing the first results for nonpresegmented frame-by-frame laughter recognition on the ICSI Meetings database.
منابع مشابه
Laughter Classification Using Deep Rectifier Neural Networks with a Minimal Feature Subset
Laughter is one of the most important paralinguistic events, and it has specific roles in human conversation. The automatic detection of laughter occurrences in human speech can aid automatic speech recognition systems as well as some paralinguistic tasks such as emotion detection. In this study we apply Deep Neural Networks (DNN) for laughter detection, as this technology is nowadays considere...
متن کاملDemonstrating Laughter Detection in Natural Discourses
This work focuses on the demonstration of previously achieved results in the automatic detection of laughter from natural discourses. In the previous work features of two different modalities, namely audio and video from unobtrusive sources, were used to build a system of recurrent neural networks called Echo State networks to model the dynamics of laughter. This model was then again utilized t...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملEvaluating automatic laughter segmentation in meetings using acoustic and acoustic-phonetic features
In this study, we investigated automatic laughter segmentation in meetings. We first performed laughterspeech discrimination experiments with traditional spectral features and subsequently used acousticphonetic features. In segmentation, we used Gaussian Mixture Models that were trained with spectral features. For the evaluation of the laughter segmentation we used time-weighted Detection Error...
متن کامل"Did you laugh enough today?" - Deep Neural Networks for Mobile and Wearable Laughter Trackers
In this paper we describe a mobile and wearable devices app that recognises laughter from speech in real-time. The laughter detection is based on a deep neural network architecture, which runs smoothly and robustly, even natively on a smartwatch. Further, this paper presents results demonstrating that our approach achieves state-of-the-art laughter detection performance on the SSPNet Vocalizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007